
ISSUE 015 • MAY 2012

 In this issue:

Virtual Prototyping and More Discussion on
Standards
by Gabe Moretti

ESL Virtual Platforms and Emulation for Early
Software Development
by Ralph Zak

Standards maybe silver, but in EDA
implementations are golden
by Michiel Ligthart

The Case for Non-Standard Development
by Lauro Rizzatti

Virtual Prototyping and More Discussion on Standards

Gabe Moretti

The editorial calendar for this month listed Virtual Prototyping as the subject. I was surprised not to
receive an article from Synopsys, the market leader in this segment. But the mystery is likely to be
solved at DAC, according to rumors from well informed sources. So yet another reason to go to DAC
and see what the largest EDA company is up to.

This issue contains one article from EVE about virtual prototyping. The author is Ralph Zak, an EDA
veteran with a strong background in hardware prototyping. Ralph has recently joined EVE as
Business Development Director. Ralph proposes an hybrid approach to system level development
that uses both virtual models at the system level and RTL code executing on an emulator. The only
reasonable alternative to this approach is to build a prototype in hardware that contains both the
cores and the reused IP that would have to be implemented in FPGAs.

http://www.gabeoneda.com/newsletter_sponsorship
http://gabeoneda.us2.list-manage.com/subscribe?u=69e20a8a97aa48d2e3161e096&id=94f43507f3
http://gabeoneda.com/newsletter
http://twitter.com/edamarket

The core message of the article is that SoC design teams rely on virtual prototyping early in a
project, and then transition to the use of hybrid transaction-based virtual platform-SoC emulation
systems for fast, pre-silicon software development and debug. This hybrid environment provides
high-performance debugging for software using an IDE with virtual processor models and RTL
debug proceeds using the emulator debug features.

By the way for a good discussion on prototyping you may want to attend the DAC pavilion session
on Wednesday at 4:30 PM. The panelists will discuss the merits of building a specific prototype
versus using a commercially available one.

The other two rticles in this issue look at standards from a pragmatic point of view.

Michiel Ligthart of Verific writes about a problem I encountered in my previous profession, as a VP
of engineering at VeriBest. Standards are supposed to allow the industry to have portability and
interoperability through a well defined and understood set of rules and definitions. For modeling
languages these are defined in the syntax and semantics of the language. Yet, Verific, just like
VeriBest, found that there are different interpretations of a language standard. Some get clarified in
the next revision of the standard, and some live on to provide subjects of debate among language
architects.

Michiel has titled his article: "Standards maybe silver, but in EDA implementations are golden". It
says it all in one brief sentence. But, just like language standards the devil is in the detail, and
reading the article you will find the details.

Lauro Rizzatti of EVE writes about the same problem but with a business point of view. The reason
that there are different implementations of the same standard is not just because there can be
different interpretations of a written standard, but because, observes Lauro, companies have
existing customers to protect. Companies invest a significant amount of resources in establishing
both a methodology and a library of IP when using a particular tool. When a new standard impacts
the way a tool works, implementing it may in fact require existing customers to make changes.
Change is expensive both in what needs to be done and in the opportunity for errors. The best case
I specifically witnessed was the Mentor implementation of the 1987 IEEE -1076 standard: the VHDL
language. Mentor, who had purchased Model technology a pioneer implementer of VHDL before the
language was standardized had made a semantic choice that was not literally incorporated in the
standard. So Mentor's VHDL, which was the simulator with the largest number of users, did not in
fact follow the standard.

At VeriBest we implemented the correct standard but put in "The Mentor Switch" to allow VHDL code
written for the Mentor simulator to work exactly as it would on the original simulator when users
switched from Mentor to us.

ESL Virtual Platforms and Emulation for Early Software
Development

Ralph Zak, Business Development Director, EVE

As SoCs double in number of processors and incorporate twice the software content with each
product generation, software development moves to the forefront of concerns for development
teams and project managers. ESL Virtual Platforms provide high-level models of new SoC designs,
including processor models. These instruction-accurate models run fast and provide a suitable
platform for early software development. As the design evolves, overall accuracy improves with
cycle-accurate RTL code for major design blocks. Co-simulating the ESL virtual platform with
available RTL code in simulators reduces the performance, and such a hybrid environment is simply
not suitable for continued software development.

However, a hybrid environment of ESL virtual platform with a cycle-accurate, hardware-based SoC
emulation system maintains the high-level performance needed by software development teams. As
the full design implementation model becomes available, the hybrid ESL-emulator environment gives
way to the emulation system as the validation transitions for both software and hardware teams.
This development flow from ESL to hybrid ESL-emulation to emulation-based validation provides a
continuous high-performance environment that increases in accuracy over the project cycle.
Providing early and increasingly accurate models for software development throughout the project
minimizes the risk of software extending the project critical path and causing unacceptable delays in
project schedules.

ESL Virtual Platforms for Early SoC Optimization

ESL systems are available from a number of EDA companies, including Synopsys and Carbon
Design Systems. Virtual Prototyping systems provide SoC modeling technologies in C, C++ and
SystemC. When a high-level model is generated, it becomes an executable specification of the
design. While not cycle accurate, it represents the full intention of the design team.

Typically, the high-level model is used to optimize the design and partition it into its hardware and
software elements. As processors are selected for the design implementation, the ESL virtual model
is updated with instruction-accurate models of the processors.

In a typical design, the evolved virtual platform can be leveraged as a software development
platform using the instruction-accurate processor model with appropriate software integrated
development environments (IDEs). Execution speeds are normally in the tens of MHz or more for
these high-level models. A drawback to such environments is that they are not cycle-accurate and,
therefore, timing-dependent faults are not discovered. Eventually, the software must be validated in
a cycle-accurate environment, long before real silicon is available.

Emulation as a Complement to ESL Virtual Platforms

Design reuse has grown to 50-80% of many SoC designs, which means most of an SoC design’s
RTL code is available in the early stages of a project. Consequently, much of the design can be
instantiated on hardware-based SoC emulation systems during the early stages of a project. This
increasing availability of “implementation” level parts of the design provides design teams with

several options:

1. The software can continue to be developed on the SoC’s high-level model with specific
processor models

2. The available RTL from design reuse and licensed IP suppliers can be integrated in a co-
simulation environment consisting of the ESL virtual model and the design team’s RTL
simulator of choice

3. A co-emulation environment can be set up between the virtual platform and an emulation
system with the available RTL code implemented in the emulation system and run at
hardware speeds

If the design team elects to go with the first option, they see no improvement in the accuracy of the
software development environment. Any verification issue related to timing will not be discovered
until later in the project schedule, and increase the attendant project risk.

Going with mixed-level co-simulation will result in a slow environment, typically running at tens of
Hz, too slow to effect any real-time verification. As a result, considerable frustration will result as
functions like booting an operating system would take weeks, months or years, instead of minutes.

With the third option, the hybrid ESL-emulation system will typically run at MHz speeds, sometimes
10 MHz or more depending on the design, allowing for most software to be executed and debugged.
Such an ESL co-emulation environment, with the ESL virtual prototype and the available RTL code
implemented in a fast emulation system, will allow software debugging to proceed with increasing
accuracy as more and more of the design is made available as RTL code.

The high-performance co-emulation integration between the ESL C, C++, SystemC world and RTL
emulation can be implemented using a transaction-based communication layer of synthesizable
verification IP, minimizing the traffic between the ESL Virtual Platform and the cycle-accurate
emulator.

For example, EVE provides C/C++ APIs for its ZeBu emulation system and all of its application-
specific synthesizable verification IP, as well as pre-integrated interfaces to specific commercial ESL
systems to implement such hybrid environments.

Emulation for Software Development

To make hybrid virtual prototype-emulation system software development environments accessible
to every design team, the emulation systems must be scalable to emulate the SoC of a specific
project, from a few million gates to billions of gates. Also critical to maintaining the integrity of the
overall software development effort is the performance of the hybrid environment.

By the very nature of an emulation implementation of a design across multiple FPGAs, custom
emulation SoCs or custom emulation FPGAs, the larger the overall system and the more chips it
takes to implement a design, the slower the environment. Size does matter in a hybrid environment.
Smaller, denser systems run faster. If used early in a project, these systems must have well-
established RTL debug capabilities and established methodologies for tracing RTL design problems

and supporting software development. Project teams frequently attempt to provide low-cost
hardware platforms or prototypes for larger software teams while hardware teams debug on the
emulation system. Difficulties usually arise from having to re-target the design to a lower cost
platform, which can take months.

If the desire is to transition from pure virtual prototype to hybrid to emulation as RTL code becomes
available, re-targeting can become quite painful. The ideal environment is one where the same
design implementation is used for both the hardware emulation debug environment and the lower-
cost software emulation platform. An example of how this can be implemented is with EVE’s ZeBu,
available in Hardware Development Platform (HDP) and Software Development Platform (SDP)
configurations. Both systems represent the SoC identically and use the same programming stream
to configure them.

Consequently, once the hardware team has mapped the SoC design into ZeBu, whether specific
blocks or the entire SoC, multiple SDP replicates can be programmed using the HDP configuration
data. The software team does not need to know how to configure ZeBu, or anything about the SoC
RTL code.

Bypassing Virtual Prototypes to Develop Software

If the processor model is supplied as RTL code, the entire design can be implemented in the
emulation system. It needs to support on-going software development in this environment with
flexible methodologies to accommodate the needs of different project teams. Some emulation
systems support connecting the software IDE through a number of mechanisms to provide flexibility,
such as:

1. JTAG transactors to bridge the host-based IDE directly to JTAG ports on processors being
emulated

2. For the Cortex family of ARM processors, ARM provides a VSTREAM transactor to link its
own IDE to high-speed serial debug ports of the processors

3. Connecting traditional hardware JTAG ICE systems to emulated embedded processor JTAG
ports

Summary

SoC design teams rely on virtual prototyping early in a project, and then transition to the use of
hybrid transaction-based virtual platform-SoC emulation systems for fast, pre-silicon software
development and debug. This hybrid environment provides high-performance debugging for
software using an IDE with virtual processor models and RTL debug proceeds using the emulator
debug features. Ideally, the software team uses lower-cost hardware systems in their hybrid
environments that do not need the SoC RTL code to be re-targeted to the software development
platform. Once processor RTL code becomes available, the emulation link to the virtual prototype
can be severed, and debug of hardware and software can be done on the full implementation
emulation model of the design.

About Ralph Zak

Ralph Zak is director of Business Development at EVE. He has held senior management positions
in many design automation companies over the past 30 years. His responsibilities have included
strategy development, product planning, technology partnerships and marketing. Several of these
companies prior to EVE also offered hardware-based verification systems, including HHB Systems,
Quickturn, Aptix, GiDEL, and Mentor Graphics. Zak has a Bachelor of Science degree in Mechanical
Engineering from the University of California, Berkeley, and an MBA from Stanford University.

Standards maybe silver, but in EDA implementations are
golden

Michiel Ligthart, President and Chief Operating Officer, Verific Design
Automation

Verific Design Automation has made it its business to provide VHDL, Verilog, and SystemVerilog
parsers based on their respective IEEE standards to the EDA community over the years. This has
not always been an easy task, but it has kept us in business and we obtained the respect from our
peers, our customers, and the end-users alike.

The IEEE standards for VHDL and SystemVerilog (of which Verilog is a subset) have drastically
evolved over time, most evident by their sheer sizes. The first VHDL standard, IEEE 1076-1987, is a
relatively small book of 218 pages, cover to cover. (I still have my hard copy.) Over time the
standard was upgraded, first to -1993, then -2002, and today we are at the -2008 version. And just
like the American populace, the standard gained significant weight during that period as it now sits at
a bulky 640 pages.

That may sound like a lot, but it is still modest compared with what SystemVerilog did to us. The first
one, IEEE 1800-2005, is only 664 pages. But wait, there is more. These are in addition to the IEEE
1364-2005, regular Verilog, which adds 590 pages of its own. Because there is a lot of overlap
between 1364 and 1800, the committee overseeing these efforts decided to merge them in a single
document of 1285 pages, known as the IEEE 1800-2009. (An updated version soon to be known as
-2012 is circulating in draft form and added only 17 pages.)

One problem we occasionally encounter is that of incompatible implementations of the same
standards. In hardware, such a thing would be incomprehensible, but software implementations
seem to get away with it. Just imagine if CISCO routers would implement a slightly off version of the
wireless IEEE 802.11 a/b/g standard. Unless everybody uses a receiver from CISCO with the
identical flaw, reception of wireless data from this device is likely to fail. Because this is not good
practice, providers of such equipment make sure they meet the standard.

Not so though in EDA. At Verific, we (at least try to) adhere to the VHDL and SystemVerilog

standards to the dot. If the language reference manual (LRM) specifies that a construct requires a
label, we check that that label is there and throw a fit if it isn’t.
Not everyone does that. As our parsers became more and more proliferate in VHDL and
SystemVerilog land, we found ourselves in situations where we would issue error messages only to
be told by a designer that some legacy tool XYZ, on which they had developed their SystemVerilog,
parsed it just fine. And even when the user would agree that his or her SystemVerilog contained a
blatant violation of the LRM, their design was beyond the point this could be remedied. Our software
had little choice than to downgrade the error message to a warning and let it slide.

These downgrades cannot be made permanent because, if that same designer would have used a
different simulator, they would have complained that our parser did not catch this obvious violation
of the LRM. Over the years, we have collected many of these discrepancies and compounded them
under a “Relaxed Checking Mode” switch. Our software always had the ability to downgrade error
messages on the fly so users in the field could continue if they encountered problems, but the switch
has the added benefit that these specific downgrades are sanctioned by our parsers. A problem of
course is that those situations where we have to downgrade our error checks are found only by trial
and error. By definition they are not in the standard and never published.

The bottom line is, as we found out, the end-user of EDA tools cares more about EDA tools than
about standards. And, if their RTL code is validated by one favorite EDA tool they like, they like their
other EDA tools to adhere. At Verific, we concluded that it was easier to change our parsers and
reproduce the behavior of that tool than change the RTL code of the designer. All we can hope for is
that eventually they all will use our parsers to validate their SystemVerilog or VHDL.

Here is a final anecdote about adjusting our parser to reality (erroneous SystemVerilog that used to
parse in some other EDA tool) instead of sticking to purity. It has happened on more than one
occasion that a customer of ours requested us to implement something against the LRM. We
consider this a customer specific enhancement and will comply if we cannot talk them out of it. In
this particular case, and I am sure some of you see this one coming: within 12 months, the same
customer filed a High Priority defect against its own enhancement. They could not believe we did not
flag this error.

About Michiel Ligthart

Michiel Ligthart, Verific’s president and chief operating officer, has an extensive background in
engineering, product marketing and general management. Prior to joining Verific, Ligthart was vice
president and general manager of west-coast operations for Theseus Logic, a startup in
asynchronous logic. Before that, he spent eight years at Exemplar Logic working in engineering and
marketing roles. Ligthart started his career with Philips Research Labs in California, and was a
visiting scholar at the Center for Integrated Systems at Stanford University. He has a Master of
Science degree in Electrical Engineering from Delft University of Technology, The Netherlands

The Case for Non-Standard Development

Lauro Rizzatti, General Manager, EVE-USA

There is no doubt that industry standards are a requirement for successful electronic design. At the
product level, bus and protocol standards allow disparate components to be combined into
integrated systems greater than the sum of their parts. At the tool level, EDA language, file format,
and methodology standards enable reuse and portability, improve knowledge transfer, and
encapsulate best practices across the industry. Yet despite these benefits, many EDA companies
still continue to develop and promote their own, non-standard or proprietary solutions—even when
their products are also standards compliant.

EDA standards typically first evolve out of fragmentation. Multiple companies take different
approaches to solving the same problem—say, low-power optimization or property specification—
and create a new language, format, and/or methodology as a part of their solution. As these
individual solutions mature, design teams demand a consolidation of features and portability across
tools, driving the need for a standard.

Hardware Verification Languages (HVLs) are a good example. Verisity (now Cadence) created e
while Synopsys created OpenVera. After many years of competition, eventually SystemVerilog was
developed, consolidating features from not just these HVLs, but also from various assertion and
design languages. Offering reduced syntax, consistent behavior, and encapsulating state-of-the-art
verification capabilities, SystemVerilog has since become ubiquitous in SoC verification. This is an
idealized example of standards development. In reality, issues with standards adoption, application,
and development all encourage parallel proprietary development.

When a new standard is released, not everyone immediately jumps on board. Although the
Universal Verification Methodology was approved by the Accellera standards body in February
2011, many companies are still using the Open Verification Methodology (OVM) or Verification
Methodology Manual (VMM) for their SoC verification environments. Some companies will delay the
adoption of a new standard because they know that the tool vendors will need time to mature their
product offerings. Many others choose to wait because of existing IP.

These companies have built up a library of IP and do not want to spend the time and effort to re-
write and re-test previously verified code. For many companies, an interoperability strategy is a
better choice—to keep using their existing IP in conjunction with new development using the
standard.

Due to their existing customer base, at the very least, EDA vendors are required to maintain their
current level of support for proprietary flows. Since there are likely to be new requests for bug fixes
and for interoperability between the existing flow and the new standard, there must also be a code
stream for new development in the non-standard flow moving forward.

A second issue driving proprietary development is the generalized nature of standards, and how this
affects their application and performance. There isn’t much point in an industry-wide standard if it
cannot be applied to a large audience, but this application requires a certain level of generalization,
and some features may fall through the cracks. If the missing feature is important enough, it may
prevent a design team from moving to the standard.

In the emulation space, Standard Co-Emulation Modeling Interface (SCE-MI) is the Accellera
standard that specifies the communication mechanism between the software and the hardware parts
of synthesizable transactors. It is a low-level communication standard and does not specify how to
write a transactor. Unfortunately, the specification may affect adversely the performance of
transaction-based co-emulation, taking away one of emulation’s key advantages. This is one reason
why many design teams using EVE hardware-assisted verification platforms opt to continue with our
proprietary solution, even though ZeBu supports SCE-MI.

The latest incarnation of SCE-MI, version 2.0, does include performance-based optimizations, but
the implementation highlights another potential application issue—conflicting standards. The high-
performance implementation in SCE-MI 2.0 includes a pipe interface not SystemVerilog compliant,
which then reduces its practical usefulness. Sometimes a proprietary solution can actually be the
more compatible one.

A final issue to consider is the amount of time it actually takes to develop and approve a standard. A
standard can be seen as a unified snapshot of the industry at a given time; however, it can take
months or years to develop this snapshot. UVM 1.0 took approximately 15 months to develop. In the
meantime, the EDA industry is not static. While a standard is being developed and approved, EDA
vendors must continue to develop their next-generation technologies, and it is easier for them to do
so within their proprietary environments. This effort is still valuable to the standards process though,
as these newer technologies contribute to the next version of the standard.

Non-standard or proprietary product development is a critical component of the EDA ecosystem that
should complement, and not compete with, industry standards. This development maximizes reuse
when new standards are being adopted, provides critical capabilities that may not exist in the
generalized standard, and enables continued innovation that can be leveraged in future standards.

	Local Disk
	Assembling the Future | Issue 015 | May 2012

